
[a system] can have

[a property] robust for 

[a set of perturbations]

Yet be fragile for

Or [a different perturbation]

[a different property] Robust

Fragile

Robust yet fragile = fragile robustness
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Hard tradeoffs

• Speed vs efficiency vs robustness vs …

• Existing theories limited to one dimension

• Important tradeoffs are across these

• Robustness  most important for complexity

• Thermodynamics (Carnot)  

• Communications (Shannon)

• Control (Bode)

• Computation (Turing)
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Quantify tradeoffs
(x, y, d) = signals
(q, a, k, h, g) = “constants”

• Complexity 
– Enzymes
– Network

• Metabolic Overhead
– Enzyme complexity
– Enzyme amount
– Autocatalysis
– Waste/Nutrients

• Fragility 
– Disturbance rejection
– Stability
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Metabolic overhead 

h, g, k, q

• Large enzymes (h, g)

• Enzyme amount k

• Autocatalysis q, a

Assume: 

Autocatalysis necessary

Less AutoC more overhead

Stoichiometry q

Rate exponent a

(WT q=a=1)
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• Microfluidic experiments

• Yeast strain W303 grown in Ethanol

• Glucose and KCN added anaerobic glycolysis

• NADH measured every 3 s
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nonlinearities)?
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• Autocatalytic feedback (essential for life)

• Efficient processes

– Minimal enzymes (lean manufacturing)

– Long assembly process (simple steps)

• Limited control feedback
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output=x
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1
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Channel

Sensor+

Channel

0

1
ln sensorS j d C Helps

Hurts

Martins, Dahleh, …



System

Sense Est.

+ ( )e t
-

ˆ( )y t

( )y t

• Sensor at temp T

• Short interval (0,t)

( )y t

Sandberg, Delvenne, Doyle

Back action Sensor “noise”

Assume “physical” sensor
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Back action

System

Sense Est.

+ ( )e t
-

ˆ( )y t

( )y t

2 2( )E y t kTt O t

• Sensor at temp T

• Short interval (0,t)

( )y t

Sensor “noise”

2 ( ) 1
kT

E e t O
t

• Simplest hard tradeoffs on speed and errors

• More tradeoffs (energy overhead vs speed vs

errors)

• Just scratching the surface

• Actuators, computation, quantum effects,…?

• Aside: linear active elements need nonlinear 

implementation
Sandberg, Delvenne, Doyle
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A transient and far-from-equilibrium

upgrade of statistical mechanics
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A transient and far-from-equilibrium

upgrade of statistical mechanics

2 ( )E y t kTt

2 ( )
kT
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t

( ) ( )y t e t kT O t

Cold sensors are 

better and faster 

(but not cheaper)

System

Sense Est.

+ ( )e t
-

ˆ( )y t

( )y t

( )y t
Back 

action

Error

( )y t

( )e t
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as 
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Leaves

Energy

BurlsSeeds

Fuel Fire Scientific toolbox

• Conservation laws/ 
constraints

– Matter and energy

– Robustness/fragility

• Feedback/Dynamics

– Autocatalysis

– Control
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P(>x)

x

LPNF data (90 years)

+ Hfire sim (500 years)

+ PLR model

SOC model

?

Fuel Fire

“Toy” models 

(phenomenological)

No real 

biology
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Basic plant/fire interaction



Photosyn

Leaves

Energy

Nutrients

Seeds

Grow

Supply

BurnFuel Fire

Grow

Two strategies

Grass

• Annual

• Die or burn each year

• Grow leaves fast

• Small stored energy

• Shade intolerant

• Expands with frequent fire
Tree (forest type)

• Perennial, dies only if burned or old age

• Slow growth (leaves plus support) 

• Larger stored energy

• Causes shade which kills grass

• Expands with infrequent fire



Universals in 

complex robust networks

So far

• Behaviors

• Laws (constraints, tradeoffs)

Next

• Architectures 



Catabolism

TCAPyr

Oxa

Cit

ACA

Gly

G1P

G6P

F6P

F1-6BP

PEP

Gly3p

13BPG

3PG

2PG

ATP

NADH
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Inside every cell

Core metabolic bowtie
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Environment Environment

Huge 

Variety
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Variety

Bacterial cell
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Same 
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Polymerization 
and complex 

assembly
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Autocatalytic feedback
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Core metabolism

DNA 

replication
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o
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Carriers

100 104 to ∞
in one

organisms

Huge 

Variety

12

8
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Ribosome

transl. Proteins
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rs

ATP

ATP

Inside every cell

Ribosomes

make 

ribosomes

Translation: Amino acids 

polymerized into proteins
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RNAp
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xRNAtransc.
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Repl. Gene

ATP

ATP

Building 

Blocks

• Translation

• Transcription

• DNA Replication
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Ribosome

RNA
RNAp

transl. Proteins

xRNAtransc.

P
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DNA
DNAp

Repl. Gene

ATP

ATP

Enzymes

Building 

Blocks

Crosslayer

autocatalysis

Macro-layers

Inside every cell
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